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ON THE THEORY OF CONTACT PROBLEMS TAKING ACCOUNT OF FRICTION ON THE 
CONTACT S~RFAGE* 

A. S. KRAVCHUK 

Problems of contact of elastic bodies, takingaccountof friction on the contact sur- 
face, are investigated. A new formulation is constructed, which is based on reduc- 
ing the problem to some nonclassical problem of the calculus of variations.Algorithms 
are proposed for the construction of approximate solutions and their convergence is 
given a foundation. Two friction laws, namely those of Coulomb and Prandtl- 
Il'iushin , are examined. 

1, Differential formulation of the suasistatic problem, The problem of the 
contact between a linearly elastic body and an absolutely rigid stamp will be examined in de- 
tail; possible generalizations are obtained on the basis of results in the paper /l/ (nonlin- 
ear elasticity, several bodies in contact]. 

We give the equation of the stamp surface in the form 

u'(s) = 0 
(see /2/ for hypotheses relative to the function F(x) . 

The complete system of equations and the boundary conditions describing the process of 
inserting a stamp with friction into an elastic solid is (this formulation is possible when 
the stamp displacement is given; the problem is written in a coordinate system coupled rigidly 
to the stamp; the case of assigning the forces is given in /I/): 

Here (1.1) is the equilibrium equation, 1 is the Hamilton operator, 'u is the elastic modulus 
tensor, E:(U) is the strain tensor, u is the displacement vector, pl: is the volume force vector, 
0 is the stress tensor, Y is the normal to S the boundary of the deformable body occupying 
a domain Q, P are surface loads, and g are given displacements. 

The last group of relationships in (1.6) express the Coulomb friction law: f is the fric- 
tion coefficient, UT‘ is the velocity of body particle motion over the stamp in a projection 
on the tangent plane, defined as the derivative with respect to the parameter t giving the 
Process of the change in external actions, TV (0, Tf. 

Therefore, the solution u = u(z, !) is a function of the spatial coordinates and the para- 
meter t; the problem is to determine u&t) which will satisfy the system of equations and 
the conditions (X.1)- (1.6), where the set of points s%_> S,, for which u(x) = 0 is the con- 
tact zone the set of points s,,C: s, for which 1~~1 <fl qjv 1 is the adhesion zone, and the 
vector u.v on S, is the contact interaction force, should be determined in the process of 

the solution. The state of the body at t = it is considered unstressed and unstrained:?l (x.0) = 
u.) (5) := 0. 

2, Derivation of the quasivariational inequality, Interpretation, Let US 
first note that the relations (1.1)-- (1.6) permit the determination of just the velocity 1~' 
(or, equivalently, the first differential of the solution du'(x, t) at the time t). Let IL' 
denote the solution at the time t and let us construct an inequality relating u', IL~+~I' G u' + dl~'. 

Let us form the invariant 
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J (n’.v).r.dS. li I,*’ (u) = s (‘Ft. UdCl !- 

? 
,J P’.rdS 

where u' is the true stress field at the time t; evidently E'(u) = 0, Vu that follows fromthe 

equilibrium condition of the body !! at the time t. 

Let uf+dr be the solution for the time t + dt, LO the kinematically possible state satisfy- 

ing the support condition on S,., the nonpenetration condition on S, , but not necessarily 

the last group of relationships in (1.6) (the Coulomb law). 

Let us form the difference 

AE = EL+'"(w) - E' (U') - [E'+"'(U'+") - .@(U')] (2.21 

It can be established that 

AE = a (did’, w _ ul+ “) _ L?’ cw _ Ilt+dt) _ (2.3) 

s (ultit . Y). (dw - du’) dS 
s 

c 

(a(u,u)=S’u(u)..~(u)dS1, dw=w-d) 
$1 

The following estimate holds 

[u (U).V].(~W - rlu') > f IO\‘(U) I(\ dw 1 - 1 d W i) (2.4) 

Therefore, the solution of the problem (l.l)- (1.6) satisfies the inequality 

a (Ufi'll, U - Uf+dl) - L;d'@ - u*+dt) -; (2.5) 

s /]cj;"'l(]d~'r (- ldur I)dS>o, VW 
“e 

Inequalities of the type (2.5) in /3/ are called quasivariational. 

The following theorem holds: the solution of the inequality (2.5) that possesses general- 

ized second derivatives will satisfy all the inequalities and conditions (l.l)- (1.6). The 

proofs of the estimate (2.4) and the mentioned theorem are cumbersome and will be published 

separately. 

3, Relation to the method of local potential, Let us form the functional 
J (u’+nf, u) z O.&I (V, II) - Ly’ (U) + 5 / 1% (U'+") 1 ) UT - UT' I&S' (3.1) 

r c 

andlet us examine the following conditional extremum problem 

.I (u’+dt, ut+q < J (ul+df, u), vu E K 

uftdt E K ( 

@it = ” 

K = (u ( ‘4’ (5) + u (5). VY (5) > 0, 5 E S,) 

(3.2) 

Theproblem (3.2) is understood as follows: An element u'+~~ is fixed and the following absol- 

uteminimization problem is solved 
J (Ul+d(, V) * min on K 

whereupon the element U*isdetermined;itis necessary to select a u'+"such that the equality 
Uf+dl = u* would hold. This is a problem of the local potential method of I. Prigogin /4/ 

(see /5/ also). 
By compiling the necessary conditions for the minimum of the functional (3.1) (taking its 

nondifferentiability into account), we arrive at the inequality (2.5), therefore, the local 
potential technique /4,5/ can be applied to solve the problem under consideration in this pap- 

er. Unfortunately, the state of the art in this method does not permit the effective construc- 
tion of a solution and obtaining a foundation to prove existence and uniqueness theorems,hence, 
another method will be used below which is borrowed from the theory of quasivariational inequal- 

ities. 

4, Method of successive approximations and existence theorems, ~0 solve the 
inequality (2.5) we use the following iteration process (we omit the superscript t + dt): 

a (ur+l, ” - UT+‘) - L, (0 - Cl) + (4.1) 

,s f I (JN W) I (I UT - UT’~ - ( U;’ - UT’I) dS > 0 

VLGK, u”+l E K 
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The quantity U' is given, and r is the number of the iteration. For each value of the super- 
script r the inequality (4.1) reduces to an ordinary problem of minimizing the functional 

J (u) = 0,5U (U, U) - L, (U) + 1 f 1 UN (U’) 11 UT - UT’ 1 dS (4.2) 

in the set K; the assertion about the existence and uniqueness of the solution IL’+’ follows 
rapidly from classical theorems on the existence and uniqueness of the minimum of a strictly 
convex functional in a closed convex set. The following (restricted) result can be establish- 
ed relative to the existence of a solution: if the friction coefficient f is sufficientlysmall 
(see below), then the sequence defined by the process (4.1) will reduce to the solution of the 
problem (2.5). 

proof, Let us write the inequality (4.1) for the preceding step of the iteration proc- 
ess, we put L" = up+' in the inequality obtained, we put u = ur in the inequality (4.1), and 
we add the results. We find 

- .(ur+'-- U', up+1 - U') + s [f II&$( - f 1 &II x (4.3) 
Y 

[I urr - UT' 1 - I uy - uTfil dS > 0 

An inequality of positive definiteness holds 

a (u. v) > a II vlllr~n, a = const > 0 

By using a theorem on traces /b/, we establish that 

(4.4) 

(4.5) 

where C is a constant defined by the elastic moduli, the body shape, and the fixing conditions. 
Introducing the notation 6~' = up - u' and using the inequalities (4.4) and (4.5), we 

establish that 

Now, let us require that the friction coefficient f satisfy the inequality f (a/C. Then the 
sequence (u'} defined by the process (4.1) will converge; it is established in the usual man- 
ner that its limit will satisfy the inequality (2.5). 

Let us note that the theoretical calculation of the upper bound a/C for f is a difficult 
problem. 

5, Algorithm for the practical solution of the ix-oblem based on the idea 
of duality, By using the results of /7/, we reduce the problem (4.2) first to the form 

(5.1) 

Let us note that 

(5.2) 

Therefore, the problem (5.1) reduces to the following problem of seeking a saddle point 

min max max x (5.3) 

=" oN~OjpT\S/loNrI 

{0.5+i ?) - L,(v) + j fpT'(uT.- UT')+ ON (8," - uN)]dS} 
SC 

Using the condition of stationarity of the functional, it can be shown that pr = -cr. The 
solution of the problem (5.3) was carried out by using an algorithm of Udzawa type (Arrow- 
Hurwitz) , which here takes the form: 

1) Distributions of U~l'o, c$"" on S, are given; 
2) The problem (5.3), which is equivalent to the usual elasticity theory problem with a 

boundary condition on Sc of the form UijVj = b?l"vi i- (U';t"')i, is solved; 
3) New distributions of the contact interaction forces are constructed by means of the 

formulas &"'= PN [cv r+l'O f PO,,. (8N - &l'o)] 
r'fl.1 

UT = PT [up” + POT (u;t’*” - uI.O] 
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where 

are orthogonal projection operators on the set c,, :.,_IJ, (0~1 --; / 1 ox’ /. pov, po2’ are parameters 
controlling the convergence of the method. 

The classical algorithm of the method of quasivariational inequalities is that for a fix- 

ed 07 the iterations on cr.>, are performed until convergence is achieved. 

The convergence of the algorithm l)-3) is assured by the concave-convex structure of the 

problem (strict convexity in 1' and concavity in (ry> UT). 

6, Dynamic problem, Let us consider this problem on the basis of the principle of 

admissiblevelocities; in conformity with this principle, we have 

(u' is the true velocity field, I:' is the kinematically admissible velocity field; the funct- 

ionals (1 and I,, are defined in Sect.2). 

Generalizing the Ostrogradskii construction /8/ (with the Mayer and Zermelo refinements) 

to the case of the continual one-sided relation available here, we introduce the set of points 

S,' = (3. / I E s,.; 'I' (z) , I( (z, t).yY (z) = IJ 

U' (s. /).TY (.r) = u, LL' (X. 1).TY (z) = 0) 

where u(x.U) and U' (X,(I) are determined by the initial conditions, u"(t,U) is determined by 

using the Gauss principle of least constraint, and we subject the set 8~' to the constraint 

hu' (2. t -1 tit).r’Y (J) > 0, vx t S,l 
Then we have the following estimate for the velocity of work of the normal pressure 

The inequality 

holds, which is established exactly as is the inequality 

Taking account of (6.2) and (6.3), we conclude that 

satisfies the inequality 

(6.2) 

- 1 UT.11 (6.3) 

(2.4). 

the solution of the dynamic problem 

Conversely, any solution of inequality (6.4) possessing second derivatives will satisfy 

equations (l.l), taking account of the inertia terms, and the conditions (1.2)- (1.6). 

7. A Priori estimate of the solution. Let US note that GU.V’=O on S,,tkre- 
fore, we can find from (6.1) (p =const) 

2.. [+ (U’, U’) + -+a (IL, “)I + s 1 ST I/ UT’ 1 as = L,’ (IL’) at (7.1) 
s c 

(the last of the relationships (1.6) was used in constructing (7.1)). 
Let us integrate (7.1) between 0 and t, we obtain 

(7.2) 

+(u’ (I)))‘2 + +u (IL (0), u (0)) 1 s L,r(u’(q)dt, (I<‘:* xi (u’. IL’) 

0 

The following estimate is valid 
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(7.3) 

We use the inequality (4.4) of the coercivity, we select the min (p/2,a/ 2) s co, E / 2 = co, 
we discard the last term on the left in (7.2), and we add the following integral to (7.2) on 
the right 

and finally obtain the inequality 

t 
WP 0) 4 ClGl + s -g II L*T II2 dT i co {‘p (z) oh 

(cp (4 = MU& II u (t) 114 
0 

3 c1co= $ (u’ (O)Y + -+ a (u (O), u (0))) 

By using the Grunwall inequality we obtain from (7.4) 

(7.4) 

(7.5) 

from which it follows that 

I E L2 (0, T; I'), u' (t) E L2 (0, T; P (Q)) 

(the definition of the space L2(0, T; X) is found in the book /9/, say, while V is defined ex- 
actly as in /2/j. 

8, Difference schemes for the solution of the dynamic problem, Problem 
of convergence, Let us present one of the difference schemes (in t) for the solution of 
the inequality (6.4) (z is the partition spacing) 

which is a purely implicit scheme; other difference schemes can be constructed by evaluating 

the part of the operator in the inequality (8.1) which does not contain inertial terms in the 
time layer to = t -:- et, 0 < i3 < 1 . For B = 0 we obtain an explicit scheme. 

The existence and uniqueness of the solution of the inequality (8.1) is proved exactly 

the same as in Sect.4, since the operator which occurs because of the inertia forces is posit- 

ive-definite. 

Let us present a scheme to investigatetheconvergence as r-to. Having constructed the 

difference analog of the inequality (7.51, we see that the sequence of approximate solutions 
is bounded in L’(O, 7’; v) uniformly in T, the sequence of approximations of the velocities 

(u'+T - u')/~ is bounded in L? (0, T; L* (Ql). Imposing suitable smoothness requirements on the 

external effects, the shape of the stamp, and the condition for initial and boundary conditions 

to agree, we establish the boundedness of the acceleration approximation. Afterwards, by us- 

ing the properties of the approximation, and the continuity of the forms in the inequality 

(8.11, we pass to the limit as ~-0. 

Let us emphasize (and Tremoligres /lo/ noticed this first) that the investigation of dif- 

ference schemesin inequalities differs in principle from the investigation of schemes for 

equations since convergence does not here follow generally from the approximation and the 

stability. 

9, Generalizations. As a number of authors has noted, the Coulomb friction law does 
not result in physically absurd results as, for instance, the unbounded growth of stresses in 

the absence of material flow; the following law /ll/ is more real: 

I%I<fI (J‘YI and I(J,(<~,+u,'=~ 

where I= cons1 or is a function of 1 uT’ 1,~~ = const or is a function of 
rate intensities. 

Reasoning analogous to that performed in Sect.2 yields the 

(9.1) 

the strain and the strain 

inequality 
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(9.2) 

where 0, is the Heaviside unit ("step") function. 

The algorithm for the solution of this inequality is constructed exactly as above, the 

difference being that the additional constraint lnrl ;=z, is imposed on the tangential stress. 
In conclusion, let us note that the variational approach to investigate the influence of 

friction in the problem of the contact between a deformable body and a rigid stamp was first 

applied in /12/, however, the formulation considered in /12/ possesses a numer of defects from 

the mechanics viewpoint: the Coulomb law relates the stresses and displacements (let us note 

that in individual cases the passage from velocities to displacements is actually possible 

/13/) : the product ilo, is considered constant; the contact zone is assumed constant. These 
hypotheses permitted reducingthe problem to the minimization of a nondifferentiable function 

without constraints, while, as shown in this paper, physically the meaningful formulation 
results in a sequence of minimization problems with constraints in the form of inequalities. 
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